

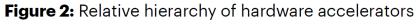
Multimedia System-on-Chip Design with specialization on Application Acceleration with High-Level-Synthesis

<u> 領瑾 Jiin Lai</u>

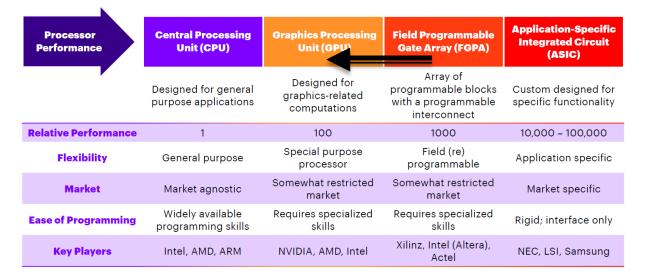
Founder, CTO, VIA Technologies Inc.

- Bachelor's Degree of National Taiwan University majoring in Electrical Engineering 1983
- Master of Science of University of Texas, Austin majoring in Computer Engineering 1987

Jiin Lai was the Chief Technology Officer for VIA Technologies. He has over 30 years experience in the PC industry, and in the past 12 years in storage area. Early in his career, he is a software engineer developing EDA tools. Later he co-founded VIA technologies, developing PC chipsets, and x86 processor. He led the engineering team to develop Intel and AMD compatible chipsets, and x86-compatible processors. In the past decade, he developed SSD controller, and later, shift focus on developing distributed computational storage system. His responsibility including product and architecture development, with an eye toward to future computing architecture need. Mr. Lai holds over 50 US patents.


Topics

- Objectives of HLS
- HLS Course Logistics



High-Level Statements

- Computational power hits a plateau
- Hardware accelerators to the rescue

(Source: Accenture analysis)

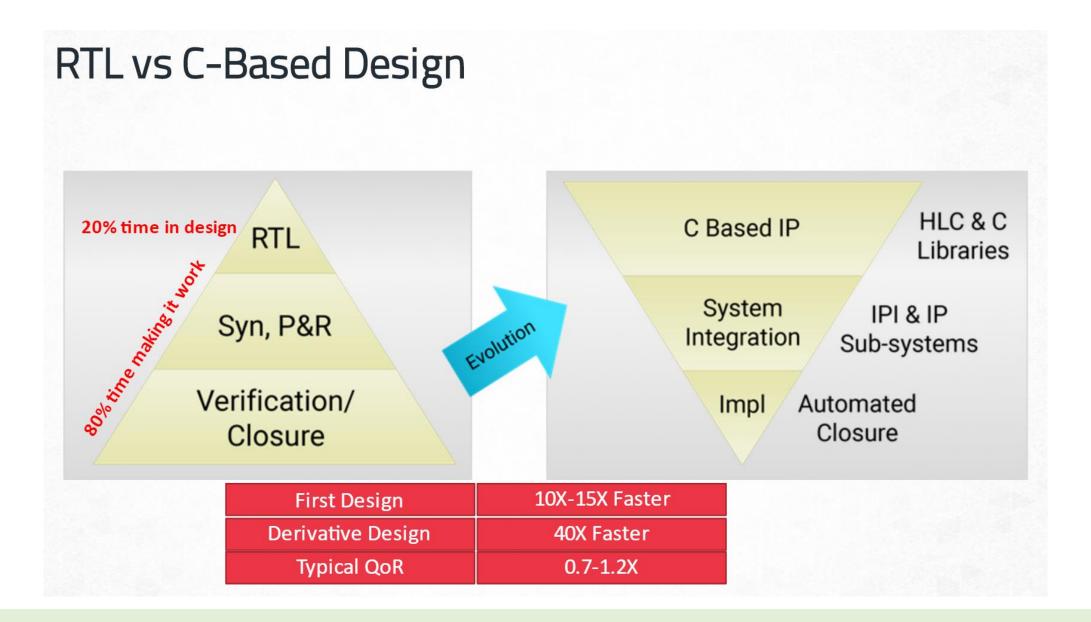
• The rise of custom accelerator marketplace

FPGA Development Made Easy

- HW language are low-level and very difficult
- Use C, C++, OpenCL,
 Python, or TensorFlow

 Know nothing about hardware design Parallel programming Concept apply

- How software application interacts with FPGA
- Off-shelf Platform ready



Use C, C++ to program FPGAs

```
// 2D Convolution (11x11)
for (int y = 0; y < height; y++) {
  for (int x = 0; x < width; x++) {
    window = in_stream.read();
    sum = 0;
    for(int row=0; row<11; row++) {
        for(int col=0; col<11; col++) {
            if (index_in_range(x+col-5, y+col-5, width, height)) {
               sum += window.val[row][col]*coeffs[row][col];
            }
        }
        out_stream.write(sum);
    }
}</pre>
```


http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/hls-survey.pdf

Think "Parallel"

- Data-level Parallelism
- Task-Level Parallelism

 Instruction (operator) -Level Parallelism

for (int i=0; i<N; i++)
{
 acc += A[i] * B[i];
}</pre>

[data (0,n-1)]

[data (1,n-1)]

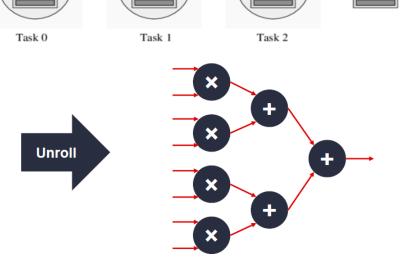
[data (m-1,n-1)] [data (m-1,4)]

Program Instance 0

Program Instance 1

Program Instance m-1

Data Parallelism


[data (0,4)]

[data (1,4)]

[data (0,3)]

[data (1,3)]

[data (m-1,3)]

Task Parallelism

[data (0,2)]

[data (1,2)]

[data (m-1,2)

[data (0,0)] 2

[data (1,0)] 2

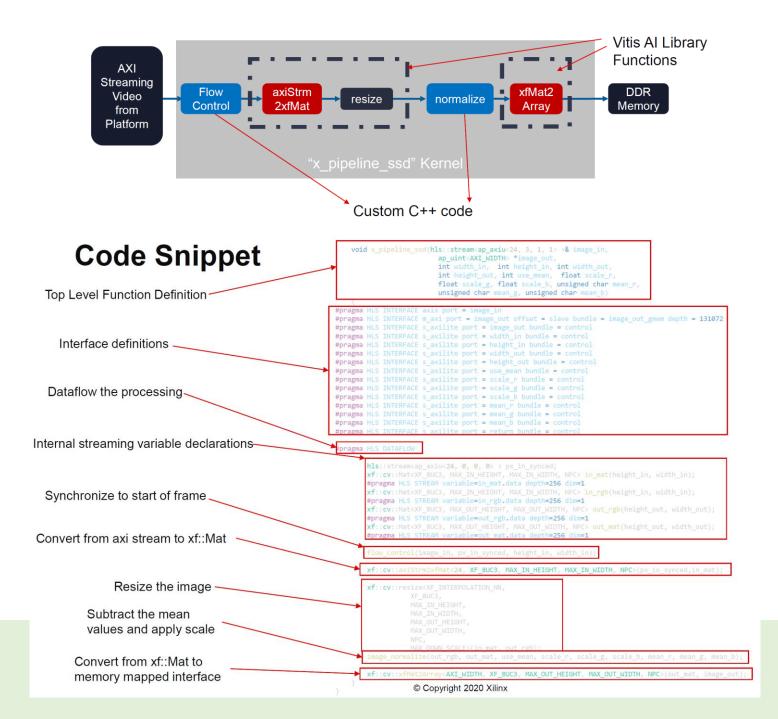

[data (m-1,0)]

[data (0,1)]

[data (1,1)]

data (m-1,1

Software Interacts with FPGA


Speedup Development by Libraries

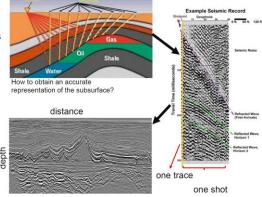
Use Extensive, Open Source Libraries

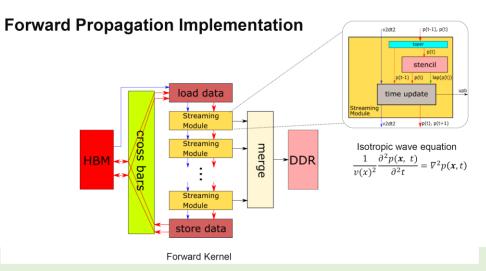
400+ functions across multiple libraries for performance-optimized out-of-the-box acceleration

Example of Oil, Gas workload

Productivity

Application	Application Code				
0	¢				


- Not the traditional programming model for FPGAs:
- One Software Engineer, no previous O&G experience, one month to describe & implement entire RTM Algo in C++
- No optimized library calls, completely described in C++
- < 500 lines of code, < 50 Pragmas</p>

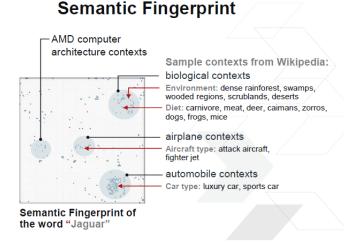

> Standard language, open source tools and libraries

Seismic Method for Oil and Gas industry

Seismic Imaging Technology

- Seismic Survey: Acoustic wave sampling
- Seismic Imaging: Mathematically process the wave traces to create an image
- ▶ RTM (Reverse Time Migration)
- High-fidelity algorithm for imaging complex sub-surface structures
- Cross-correlation between source wavefield and receiver wavefield
- Wavefield reconstruction by saved boundaries

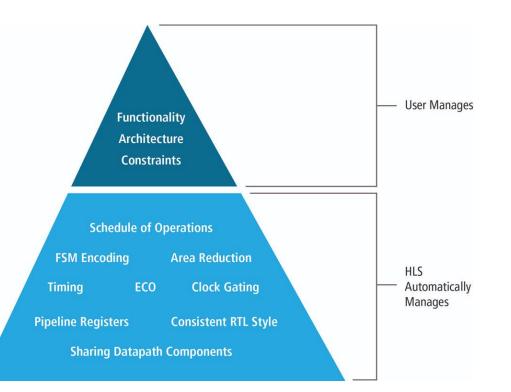
Message Intelligence Appliance Cortical.io


- Semantic Supercomputing for NLU (Natural Language Understanding)
- Automatically classifies message based on semantics/meaning of the content

Semantic Folding Explained

Words, sentences & paragraphs are represented by a semantic fingerprints

- Each word is represented by
 16K binary contexts in a 2D vector
- > All operations are **binary**
- > Minimal source material required: reference material, textbooks, data sheets, emails, etc.
- > Creation of the semantic fingerprints is completely unsupervised
- > All meanings of a word are represented



Why HLS?

- Productivity (Design and Verification)
- IP Reuse
- Better QoR
- End-to-end application acceleration by software designer
- For academic, A great tool/skill for research.

Empower software designers to develop efficient application accelerator

Course Contents

- Course Texts:
 - R. Kastner, Parallel Programming for FPGAs, arXiv, 2018
 - Xilinx ug902
- Supplementary Materials:
 - Reference Papers
 - Manual/Datasheets
- Lecture ppt & video 16 sessions
- Labs ~200 optional lab references
- In-class presentation 5 sessions + final project presentation
- Final project & presentation

Logistics

- Off-class lecture & lab/assignment
 - Lecture is self-paced
 - Lab/assignment is self-paced with lab-work submission
- In-class presentation & discussion
 - Sign-up by Google-Form (submit by Thursday 3pm)
 - Presentation selected based on available time slots, weight, and submission time.
 - Refer to "HLS Course Plan.doc"

In-class schedule and subjects

https://cool.ntu.edu.tw/courses/3773/modules/items/110288

session	Date	Suggest lecture title - self-paced	pdf	video	In-classs discussion topics	Assignment
1	18-Sep	Course Introduction	§	§		HLS flow
		Introduction PYNQ & Lab2	§	§		ug871 labs ug871-[1:7]
		Vitis OpenCL XRT and Lab3	§	§		Lab1: Tool Installation
		Introduction to FPGA				Lab2: PYNQ axi-m & stream
						Lab3: OpenCL/XRT
2	16-Oct	Kernal IO Interface	ş	§	ug871 Labs ug871-[1:7]	Xlinx Training Lab -xtrain-[1:13]
		Introduction to High Level Synthesis	ş	§	HLS, Vivado, Vitis usage experience	Xilinx HLS Coding Style
		FPGA - CLB	§	§	Lab1, Lab2, Lab3 sharing	Xilinx HLS Design - xdesign-[1:15]
		FPGA - Memory	§	§		
			§	§		
3	30-Oct	System Optimization - Host	§	§	Xlinx Training Lab -xtrain-[1:13]	Vitis Tutorial - vitis-[1:7]
		System Optimizatin - Kernel	§	§	Xilinx HLS Design - xdesign-[1:15]	UCSD Lab ucsd-[1:5]
		FPGA - DSP	§	§		Cornell - ECE5775 cornell-[1:4]
		FPGA - Interconnect	§	§		
4	13-Nov	Kernel Optimization - Area	§	§	Vitis Tutorial - vitis-[1:7]	pp4fpga-[1:8]
		Kernel Optimization - Latency	§	§	UCSD Lab ucsd-[1:5]	Xilinx HLx Examples xhls-[1:18]
		Kernel Optimization - Pipeline	§	§	Cornell - ECE5775 cornell-[1:4]	
			-			
5	27-Nov	Design Examples	§	§	pp4fpga-[1:8]	
		Application Cases	§	§	Xilinx HLx Examples xhls-[1:18]	Xilinx Application Notes xapp-[1:13
6	11-Dec				All topics	Final Project
-						Refer to project resource weight=10
	22-Jan	Final Project presentation				
	22 3011	i mai i i sjece presentation				

Lectures – Self-Paced

1. Tools & Platform

- a. Introduction to PYNQ & Lab2
- b. Vitis OpenCL XRT and Lab3

2. FPGA (Xilinx)

- a. Introduction to FPGA
- b. FPGA CLB
- c. FPGA Memory
- d. FPGA DSP
- e. FPGA Interconnect

3. Concept of System Performance and Optimization

- a. Host Optimization
- b. Kernel Optimization

1. HLS Development

- a. Introduction to High Level Synthesis
- b. Kernel IO Interface
- c. Kernel Optimization Area
- d. Kernel Optimization Latency
- e. Kernel Optimization Pipeline

2. Design Examples and Application

- a. Design Examples
- b. Application Cases

Platform/Tools for Labs

- Vivado HLS For Kernel optimization
 - Vivado HLS C-sim, Synthesis, Co-Sim, IP-generation
 - Analyze resource, latency, timeline/scheduling, waveform
- Pynq (MPSOC AXI) Embedded System
 - Run HLS C-sim, Co-sim, IP-generation
 - Vivado IP integration, block-design, generate bit-stream
 - Download to Zedboard/PYNQ-Z2 and run Jupyter Notebook
- Vitis & AWS-F1 (FPGA-PCIe) Cloud Application
 - Run HLS C-sim, Co-sim, IP-generation
 - Vitis run SW-emulation, HW-emulation, Bitstream generation
 - Upload to AWS, run application (host code) at host PC
 - Profiling and analyzing application performance

Xilinx Tools & Exercise

- Exercises/tutorials provided to gain proficiency in design flow
 - Vivado HLS 2019.2
 - Vivado Design Suite 2019.2
 - Xilinx Vitis IDE/Makefile
 - AWS

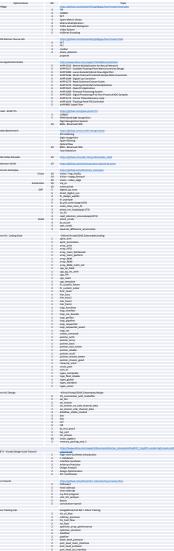
Refer to "Xilinx Tool Flow.ppt"

Develop Basic Skill/Tools in the first two weeks

- The following three labs in the first two weeks
 - Lab#1 Tool installation and Implementation Flow.
 - Lab#2 Application Acceleration for Embedded System (PYNQ-Zedboard).
 - Lab#3 Application Acceleration for Cloud Environment (Amazon)

Lab/Assignment & Submission Criteria

• Lab/Project reference resources


Refer to "HLS Lab Project Resources.xls" <u>https://cool.ntu.edu.tw/courses/3773/modules/items/110289</u>

• Weight Categories

Weight	Description	Submission
	Single item, exercise optimization pragma, coding style,	1. Screen dump: HLS, latency, resource, io interface,
1,2	setup/runing/analysis effort: 30min-1hr	timeline
	code hoist, Exercise mulitple optimization, comparative analysis,	Vitis summary, HLS synthesis_report
3,4	effort: 2-3 hr	ppt/word: description of observation and learning
5-9	algorithm level: code hoist, comparative analysis, effort: days	1. ppt & presentation
		 introduce domain knowledge/theorem
	application level, need domain knowledge/background,	- optimization method
	effort: weeks	- comparison of optimization merit / tradeoff
10	Candidate for final team project	2. github submission for publication

• Other Lab/Project proposal is welcomed. Weight will be assigned.

Lab/Project References

Lab/Project Resources

INTELLIGET	N T G			
LabName	ID	Wt	Торіс	
pp4fpga			https://github.com/KastnerRG/pp4fpgas/tree/master/examples_	Kastnter pp4fpga text book
	1	3	FIR	
	2	3	CORDIC DFT	
	4	3	Spare Matrix Vector	
	5	3	Matrix Multiplication	
	6	3	Prefix Sum and Histogram	
	7	3	Video System	
	8	5	Huffman Encoding	
185 <mark>h264</mark>		10	https://github.com/adsc-hls/synthesizable_h264	H.264 Video Decoder
186 swater		10	https://github.com/necst/coursera-sdaccel-practice	Smith-Waterman - gene sequence
187 <mark>cirrna</mark>		10	https://github.com/necst/circFAXOHW18public	circular RNA aligner
188 point5		10	https://bitbucket.org/necst/xohw18_5points_public/src/master/	five point relative pose problem
189 sha256		5	https://github.com/dowenberghmark/FPGA-SHA256	SHA256
190 beamf		5	https://developer.xilinx.com/en/articles/beamforming-acceleration.html	beamforming
191 ethash		10	https://developer.xilinx.com/en/articles/part1-introduction-to-ethash.html	blockchain - hashing for Ethereum
192 mcarlo		10	https://github.com/KitAway/FinancialModels_AmazonF1/tree/master	Monte Carlo financial models
193 <mark>profax</mark>		10	https://bitbucket.org/necst/profax-src/src/master/	Protein Folding Algorithm
194 graph		10	https://github.com/Xtra-Computing/ThunderGP	Graph Processing

Course Credits

- Earn credits from the followings:
 - Submit Lab/Assignment choose from lab/project references or propose yours
 - Credit based on the weight category
 - Class Presentation 5 minutes presentation
 - weight category * quality <0.7 1.3> (insight + presentation skill)
 - Final project 10 minutes presentation
 - Weight <5-10> * quality <0.7 1.3> (insight + presentation skill)
- Where is the insight from
 - Fully understand the material
 - Deeper observation on the analysis report
 - Try out different optimization, make trade-off, and comparative analysis

