
Multimedia System-on-Chip Design
with specialization on

Application Acceleration with High-Level-Synthesis

頼瑾 Jiin Lai

Founder, CTO, VIA Technologies Inc.

 Bachelor’s Degree of National Taiwan University

majoring in Electrical Engineering 1983

 Master of Science of University of Texas, Austin

majoring in Computer Engineering 1987

Jiin Lai was the Chief Technology Officer for VIA Technologies. He has over 30 years

experience in the PC industry, and in the past 12 years in storage area. Early in his

career, he is a software engineer developing EDA tools. Later he co-founded VIA

technologies, developing PC chipsets, and x86 processor. He led the engineering team

to develop Intel and AMD compatible chipsets, and x86-compatible processors. In the

past decade, he developed SSD controller, and later, shift focus on developing

distributed computational storage system. His responsibility including product and

architecture development, with an eye toward to future computing architecture need. Mr.

Lai holds over 50 US patents.

Topics

• Objectives of HLS

• HLS Course Logistics

High-Level Statements

• Computational power hits a plateau

• Hardware accelerators to the rescue

Software defined Hardware – the new era of computing infrastructure

https://www.accenture.com/_acnmedia/pdf-84/accenture-software-defined-hardware-v09.pdf

• The rise of custom accelerator marketplace

https://www.accenture.com/_acnmedia/pdf-84/accenture-software-defined-hardware-v09.pdf

FPGA Development Made Easy

• Know nothing about
hardware design

• How software application
interacts with FPGA

• Use C, C++, OpenCL,
Python, or TensorFlow

• Off-shelf Platform
ready

• Parallel programming
Concept apply

• HW language are low-level
and very difficult

Use C, C++ to program FPGAs

HLS

http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/hls-survey.pdf

Think “Parallel”

• Data-level Parallelism

• Task-Level Parallelism

• Instruction (operator) -

Level Parallelism

Software Interacts with FPGA

X86 CPU FPGA

Host
Application

Accelerated
Function

PCIe

User

application

Program

FPGA

Platform

Code

C/C++, Python,

OpenCL with

API

C/C++

Functions

Speedup Development by Libraries

Example of Oil, Gas workload

Message Intelligence Appliance Cortical.io

• Semantic Supercomputing for NLU (Natural
Language Understanding)

• Automatically classifies message based on
semantics/meaning of the content

Semantic folding theory white paper: https://www.cortical.io/static/downloads/semantic-folding-theory-white-

paper.pdf

https://www.cortical.io/static/downloads/semantic-folding-theory-white-paper.pdf

Why HLS?

• Productivity (Design and
Verification)

• IP Reuse

• Better QoR

• End-to-end application acceleration
by software designer

• For academic, A great tool/skill for
research.

Course Objectives

Empower software designers to develop
efficient application accelerator

Course Contents

• Course Texts:
• R. Kastner, Parallel Programming for FPGAs, arXiv, 2018

• Xilinx ug902

• Supplementary Materials:
• Reference Papers

• Manual/Datasheets

• Lecture ppt & video – 16 sessions

• Labs – ~200 optional lab references

• In-class presentation – 5 sessions + final project presentation

• Final project & presentation

Logistics

• Off-class lecture & lab/assignment
• Lecture is self-paced

• Lab/assignment is self-paced with lab-work submission

• In-class presentation & discussion
• Sign-up by Google-Form (submit by Thursday 3pm)

• Presentation selected based on available time slots, weight, and submission
time.

• Refer to “HLS Course Plan.doc”

In-class schedule and subjects
https://cool.ntu.edu.tw/courses/3773/modules/items/110288

https://cool.ntu.edu.tw/courses/3773/modules/items/110288

Lectures – Self-Paced

1. Tools & Platform
a. Introduction to PYNQ & Lab2

b. Vitis OpenCL XRT and Lab3

2. FPGA (Xilinx)
a. Introduction to FPGA

b. FPGA – CLB

c. FPGA – Memory

d. FPGA – DSP

e. FPGA – Interconnect

3. Concept of System Performance and

Optimization
a. Host Optimization

b. Kernel Optimization

1. HLS Development
a. Introduction to High Level Synthesis

b. Kernel IO Interface

c. Kernel Optimization – Area

d. Kernel Optimization – Latency

e. Kernel Optimization – Pipeline

2. Design Examples and Application
a. Design Examples

b. Application Cases

Platform/Tools for Labs

• Vivado HLS - For Kernel optimization
• Vivado HLS – C-sim, Synthesis, Co-Sim, IP-generation

• Analyze resource, latency, timeline/scheduling, waveform

• Pynq (MPSOC - AXI) – Embedded System
• Run HLS – C-sim, Co-sim, IP-generation

• Vivado – IP integration, block-design, generate bit-stream

• Download to Zedboard/PYNQ-Z2 and run Jupyter Notebook

• Vitis & AWS-F1 (FPGA-PCIe) – Cloud Application
• Run HLS – C-sim, Co-sim, IP-generation

• Vitis - run SW-emulation, HW-emulation, Bitstream generation

• Upload to AWS, run application (host code) at host PC

• Profiling and analyzing application performance

Xilinx Tools & Exercise

• Exercises/tutorials provided to gain proficiency in design flow
• Vivado HLS 2019.2

• Vivado Design Suite 2019.2

• Xilinx Vitis IDE/Makefile

• AWS

Refer to “Xilinx Tool Flow.ppt”

Develop Basic Skill/Tools in the first two weeks

• The following three labs in the first two weeks
• Lab#1 - Tool installation and Implementation Flow.

• Lab#2 - Application Acceleration for Embedded System (PYNQ-Zedboard).

• Lab#3 - Application Acceleration for Cloud Environment (Amazon)

Lab/Assignment & Submission Criteria

• Lab/Project reference resources
• Refer to “HLS Lab Project Resources.xls” https://cool.ntu.edu.tw/courses/3773/modules/items/110289

• Weight Categories

• Other Lab/Project proposal is welcomed. Weight will be
assigned.

Weight Description Submission

1,2
Single item, exercise optimization pragma, coding style,
setup/runing/analysis effort: 30min-1hr

1. Screen dump: HLS, latency, resource, io interface,
timeline
2. Vitis summary, HLS synthesis_report
3. ppt/word: description of observation and learning3,4

code hoist, Exercise mulitple optimization, comparative analysis,
effort: 2-3 hr

5-9 algorithm level: code hoist, comparative analysis, effort: days 1. ppt & presentation
- introduce domain knowledge/theorem
- optimization method
- comparison of optimization merit / tradeoff
2. github submission for publication10

application level, need domain knowledge/background,
effort: weeks
Candidate for final team project

Optimization Wt Topic
pp4fpga https://github.com/KastnerRG/pp4fpgas/tree/master/examples

3 FIR
3 CORDIC
3 DFT
3 Spare Matrix Vector
3 Matrix Multiplication
3 Prefix Sum and Histogram
3 Video System
5 Huffman Encoding

UCSD Kastner Course Lab https://github.com/KastnerRG/pp4fpgas/tree/master/labs
3 DFT
1 FFT
3 cordiac
3 phase_detector

project4

Xilinx Application Notes https://www.xilinx.com/support.html#documentation
5 XAPP1332 - Matrix Multiplication for Neural Network
5 XAPP1317 - Scalable Floating-Point Matrix Inversion Design
5 XAPP1300 - Lucas-Kanade Optical Flow Algorithm
5 XAPP1236 - Multi-Channel Fractional Sample Rate Conversion
5 XAPP1299 - Digital Up-Converter
5 XAPP1273 - Reed-Solomon Erasure Codec
5 XAPP1170 - Floating Point Matrix Multiplication
5 XAPP1167 - OpenCV Application
5 XAPP1209 - Protocol Processing System
5 XAPP1203 - Signal Processing IP to Post-Process XADC Samples
5 XAPP1173 - Carrier Phase Recovery Loop
5 XAPP1163 - Floating-Point PID Controller
5 XAPP890 -Sobel Filter

Cornell - ECE5775 https://github.com/ptpan/ece5775
3 CORDIC
5 KNN-based digit recognition

Digit Recoginition System
10 BNN - Binarized CNN

Rosetta Benchmark https://github.com/cornell-zhang/rosetta
3D rendering
Digit recognition
Spam filtering
Optical flow

10 BNN - Binarized CNN
Face Detection

H.264 Video Decoder 10 https://github.com/adsc-hls/synthesizable_h264

Waterman-Smith 10 https://github.com/necst/coursera-sdaccel-practice

Xilinx HLx Examples https://github.com/Xilinx/HLx_Examples
Vision 10 Vision - img_histEq

10 Vision - mpeg_forward
10 Vision - video_edge

Accleration 10 tcp_ip
10 memcached

DSP 5 digital_up_conv
5 direct_digital_syn
3 fir_design_wp491
3 fir_example
5 fp_pid_contr (xapp1163)
5 multi_chan_conv_fil
3 phase_rec_loop(xapp1173)
3 ssr_fir
3 reed_solomon_erasure(xapp1273)

Math 3 atan2_cordic
3 fp_accum
3 sqrt_cordic
3 Squared_difference_accumulate

Xilinx HLS Coding Style ~/Xilinx/Vivado/2019.2/exampels/coding
1 apint_arth
1 apint_promotion
1 array_arith
1 array_FIFO
1 array_mem_bottleneck
1 array_mem_perform
1 array_RAM
1 array_ROM
1 array_ROM_math_init
1 cpp_ap_fixed
1 cpp_ap_int_arith
1 cpp_FIR
1 cpp_math
1 cpp_template
2 fir_systolic_frame
2 fir_systolic_scalar
1 func_sized
1 hier_func
1 hier_func2
1 hier_func3
1 hier_func4
1 loop_functions
1 loop_imerfect
1 loop_ma_bounds
1 loop_perfect
1 loop_pipeline
1 loop_sequential
1 loop_sequential_assert
1 loop_var
1 malloc_removed
1 pointer_arith
1 pointer_array
1 pointer_basic
1 pointer_cast_native
1 pointer_double
1 pointer_multi
1 pointer_stream_better
1 pointer_stream_good
1 resource_uram
1 struct_port
1 sum_io
1 types_composite
1 type_float_double
1 types_global
1 types_standard
1 types_union

Xilinx HLS Design ~Xilinx/Vivado/2019.2/examples/design
5 2D_convolution_with_linebuffer
2 axi_lite
2 axi_master
2 axi_stream_no_side_channel_data
2 axi_stream_side_channel_data
3 dataflow_stable_content
3 dds
3 dsp
3 FFT
5 FIR
2 fp_mul_pow2
2 fxp_sqrt
2 hls_stream

10 linear_algebra
3 memory_porting_and_ii

ug871 - Vivado Design Suite Tutorial
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug871-vivado-high-level-synthesis-
tutorial.pdf

2 High-Level-Synthesis Introduction
2 C Validation
2 Interface Synthesis
2 Arbitrary Precision
2 Design Analysis
2 Design Optimization
2 RTL Verification

Vitis Tutorial https://github.com/Xilinx/Vitis-Tutorials/tree/master/docs
2 Pathway3
2 Host code opt
2 host-code-opt
2 my-first-program
2 vitis_hls_analysis
5 Bloom
5 convolution-tutorial

Xilinx Training Lab GoogleDrive/Lab Ref > Xilinx Training
2 hls_cli_flow
2 arbitray_precision
2 hls_tool_flow
2 hlx_flow
2 optimize_array_performance
2 optimize_structure
2 dataflow
2 pipeline
2 block_level_protocol
2 port_level_mem_interface
2 port_level_protocol
2 port_level_axi_interface
2 vitis_optimization

Lab/Project References

https://cool.ntu.edu.tw/courses/3773/modules/items/110289
https://github.com/KastnerRG/pp4fpgas/tree/master/examples
https://github.com/KastnerRG/pp4fpgas/tree/master/labs
https://www.xilinx.com/support.html#documentation
https://github.com/ptpan/ece5775
https://github.com/cornell-zhang/rosetta
https://github.com/adsc-hls/synthesizable_h264
https://github.com/necst/coursera-sdaccel-practice
https://github.com/Xilinx/HLx_Examples
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug871-vivado-high-level-synthesis-tutorial.pdf
https://github.com/Xilinx/Vitis-Tutorials/tree/master/docs

Lab/Project Resources

Course Credits

• Earn credits from the followings:
• Submit Lab/Assignment choose from lab/project references or propose yours

• Credit based on the weight category

• Class Presentation – 5 minutes presentation
• weight category * quality <0.7 - 1.3> （insight + presentation skill)

• Final project – 10 minutes presentation
• Weight <5-10> * quality <0.7 - 1.3> (insight + presentation skill)

• Where is the insight from
• Fully understand the material

• Deeper observation on the analysis report

• Try out different optimization, make trade-off, and comparative analysis

