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High-Level Statements

• Computational power hits a plateau

• Hardware accelerators to the rescue

Software defined Hardware – the new era of computing infrastructure

https://www.accenture.com/_acnmedia/pdf-84/accenture-software-defined-hardware-v09.pdf

• The rise of custom accelerator marketplace

https://www.accenture.com/_acnmedia/pdf-84/accenture-software-defined-hardware-v09.pdf


FPGA Development Made Easy

• Know nothing about 
hardware design

• How software application 
interacts with FPGA

• Use C, C++, OpenCL, 
Python, or TensorFlow

• Off-shelf Platform 
ready

• Parallel programming 
Concept apply

• HW language are low-level 
and very difficult



Use C, C++ to program FPGAs

HLS



http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/hls-survey.pdf



Think “Parallel”

• Data-level Parallelism

• Task-Level Parallelism 

• Instruction (operator) -

Level Parallelism



Software Interacts with FPGA
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Speedup Development by Libraries





Example of Oil, Gas workload



Message Intelligence Appliance  Cortical.io

• Semantic Supercomputing for NLU (Natural 
Language Understanding)

• Automatically classifies message based on 
semantics/meaning of the content

Semantic folding theory white paper: https://www.cortical.io/static/downloads/semantic-folding-theory-white-

paper.pdf

https://www.cortical.io/static/downloads/semantic-folding-theory-white-paper.pdf


Why HLS?

• Productivity (Design and 
Verification)

• IP Reuse

• Better QoR

• End-to-end application acceleration 
by software designer

• For academic, A great tool/skill for 
research.



Course Objectives

Empower software designers to develop 
efficient application accelerator



Course Contents

• Course Texts:
• R. Kastner, Parallel Programming for FPGAs, arXiv, 2018

• Xilinx ug902 

• Supplementary Materials: 
• Reference Papers

• Manual/Datasheets

• Lecture ppt & video – 16 sessions

• Labs – ~200 optional lab references

• In-class presentation – 5 sessions + final project presentation

• Final project & presentation



Logistics

• Off-class lecture & lab/assignment
• Lecture is self-paced

• Lab/assignment is self-paced with lab-work submission

• In-class presentation & discussion
• Sign-up by Google-Form (submit by Thursday 3pm)

• Presentation selected based on available time slots, weight, and submission 
time. 

• Refer to “HLS Course Plan.doc”



In-class schedule and subjects
https://cool.ntu.edu.tw/courses/3773/modules/items/110288

https://cool.ntu.edu.tw/courses/3773/modules/items/110288


Lectures – Self-Paced

1. Tools & Platform
a. Introduction to PYNQ & Lab2

b. Vitis OpenCL XRT and Lab3

2. FPGA (Xilinx)
a. Introduction to FPGA

b. FPGA – CLB

c. FPGA – Memory

d. FPGA – DSP

e. FPGA – Interconnect

3. Concept of System Performance and 

Optimization
a. Host Optimization

b. Kernel Optimization

1. HLS Development
a. Introduction to High Level Synthesis

b. Kernel IO Interface

c. Kernel Optimization – Area

d. Kernel Optimization – Latency

e. Kernel Optimization – Pipeline

2. Design Examples and Application
a. Design Examples

b. Application Cases



Platform/Tools for Labs

• Vivado HLS  - For Kernel optimization
• Vivado HLS  – C-sim, Synthesis, Co-Sim, IP-generation

• Analyze resource, latency, timeline/scheduling, waveform

• Pynq (MPSOC - AXI) – Embedded System
• Run HLS – C-sim, Co-sim, IP-generation

• Vivado – IP integration, block-design, generate bit-stream

• Download to Zedboard/PYNQ-Z2 and run Jupyter Notebook

• Vitis & AWS-F1 (FPGA-PCIe) – Cloud Application
• Run HLS – C-sim, Co-sim, IP-generation

• Vitis - run SW-emulation, HW-emulation, Bitstream generation

• Upload to AWS, run application (host code) at host PC

• Profiling and analyzing application performance



Xilinx Tools & Exercise

• Exercises/tutorials provided to gain proficiency in design flow 
• Vivado HLS 2019.2

• Vivado Design Suite 2019.2

• Xilinx Vitis IDE/Makefile

• AWS

Refer to “Xilinx Tool Flow.ppt”



Develop Basic Skill/Tools in the first two weeks

• The following three labs in the first two weeks
• Lab#1 - Tool installation and Implementation Flow. 

• Lab#2 - Application Acceleration for Embedded System (PYNQ-Zedboard). 

• Lab#3 - Application Acceleration for Cloud Environment (Amazon)



Lab/Assignment & Submission Criteria

• Lab/Project reference resources  
• Refer to “HLS Lab Project Resources.xls” https://cool.ntu.edu.tw/courses/3773/modules/items/110289

• Weight Categories

• Other Lab/Project proposal is welcomed. Weight will be 
assigned.

Weight Description Submission

1,2
Single item, exercise optimization pragma, coding style, 
setup/runing/analysis  effort: 30min-1hr

1. Screen dump: HLS, latency, resource, io interface, 
timeline
2. Vitis summary, HLS synthesis_report
3. ppt/word: description of observation and learning3,4

code hoist, Exercise mulitple optimization, comparative analysis, 
effort: 2-3 hr

5-9 algorithm level: code hoist, comparative analysis, effort: days 1. ppt & presentation 
- introduce domain knowledge/theorem
- optimization method
- comparison of optimization merit / tradeoff
2. github submission for publication10

application level, need domain knowledge/background, 
effort: weeks
Candidate for final team project

Optimization Wt Topic
pp4fpga https://github.com/KastnerRG/pp4fpgas/tree/master/examples 

3 FIR
3 CORDIC
3 DFT
3 Spare Matrix Vector
3 Matrix Multiplication
3 Prefix Sum and Histogram
3 Video System
5 Huffman Encoding

UCSD Kastner Course Lab https://github.com/KastnerRG/pp4fpgas/tree/master/labs
3 DFT
1 FFT
3 cordiac
3 phase_detector

project4

Xilinx Application Notes https://www.xilinx.com/support.html#documentation 
5 XAPP1332 - Matrix Multiplication for Neural Network
5 XAPP1317 - Scalable Floating-Point Matrix Inversion Design
5 XAPP1300 - Lucas-Kanade Optical Flow Algorithm
5 XAPP1236 - Multi-Channel Fractional Sample Rate Conversion
5 XAPP1299 - Digital Up-Converter 
5 XAPP1273 - Reed-Solomon Erasure Codec 
5 XAPP1170 - Floating Point Matrix Multiplication
5 XAPP1167 - OpenCV Application
5 XAPP1209 - Protocol Processing System
5 XAPP1203 - Signal Processing IP to Post-Process XADC Samples
5 XAPP1173 - Carrier Phase Recovery Loop
5 XAPP1163 - Floating-Point PID Controller
5 XAPP890 -Sobel Filter

Cornell - ECE5775 https://github.com/ptpan/ece5775
3 CORDIC
5 KNN-based digit recognition

Digit Recoginition System
10 BNN - Binarized CNN

Rosetta Benchmark https://github.com/cornell-zhang/rosetta
3D rendering
Digit recognition 
Spam filtering
Optical flow

10 BNN - Binarized CNN
Face Detection

H.264 Video Decoder 10 https://github.com/adsc-hls/synthesizable_h264

Waterman-Smith 10 https://github.com/necst/coursera-sdaccel-practice

Xilinx HLx Examples https://github.com/Xilinx/HLx_Examples
Vision 10 Vision - img_histEq

10 Vision - mpeg_forward
10 Vision - video_edge

Accleration 10 tcp_ip
10 memcached

DSP 5 digital_up_conv
5 direct_digital_syn
3 fir_design_wp491
3 fir_example
5 fp_pid_contr (xapp1163)
5 multi_chan_conv_fil
3 phase_rec_loop(xapp1173)
3 ssr_fir
3 reed_solomon_erasure(xapp1273)

Math 3 atan2_cordic
3 fp_accum
3 sqrt_cordic
3 Squared_difference_accumulate

Xilinx HLS  Coding Style ~/Xilinx/Vivado/2019.2/exampels/coding
1 apint_arth
1 apint_promotion
1 array_arith
1 array_FIFO
1 array_mem_bottleneck
1 array_mem_perform
1 array_RAM
1 array_ROM
1 array_ROM_math_init
1 cpp_ap_fixed
1 cpp_ap_int_arith
1 cpp_FIR
1 cpp_math
1 cpp_template
2 fir_systolic_frame
2 fir_systolic_scalar
1 func_sized
1 hier_func
1 hier_func2
1 hier_func3
1 hier_func4
1 loop_functions
1 loop_imerfect
1 loop_ma_bounds
1 loop_perfect
1 loop_pipeline
1 loop_sequential
1 loop_sequential_assert
1 loop_var
1 malloc_removed
1 pointer_arith
1 pointer_array
1 pointer_basic
1 pointer_cast_native
1 pointer_double
1 pointer_multi
1 pointer_stream_better
1 pointer_stream_good
1 resource_uram
1 struct_port
1 sum_io
1 types_composite
1 type_float_double
1 types_global
1 types_standard
1 types_union

Xilinx HLS Design ~Xilinx/Vivado/2019.2/examples/design
5 2D_convolution_with_linebuffer
2 axi_lite
2 axi_master
2 axi_stream_no_side_channel_data
2 axi_stream_side_channel_data
3 dataflow_stable_content
3 dds
3 dsp
3 FFT
5 FIR
2 fp_mul_pow2
2 fxp_sqrt
2 hls_stream

10 linear_algebra
3 memory_porting_and_ii

ug871 - Vivado Design Suite Tutorial 
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug871-vivado-high-level-synthesis-
tutorial.pdf

2 High-Level-Synthesis Introduction
2 C Validation
2 Interface Synthesis
2 Arbitrary Precision
2 Design Analysis
2 Design Optimization
2 RTL Verification

Vitis Tutorial https://github.com/Xilinx/Vitis-Tutorials/tree/master/docs
2 Pathway3
2 Host code opt
2 host-code-opt
2 my-first-program
2 vitis_hls_analysis
5 Bloom
5 convolution-tutorial

Xilinx Training Lab GoogleDrive/Lab Ref > Xilinx Training
2 hls_cli_flow
2 arbitray_precision
2 hls_tool_flow
2 hlx_flow
2 optimize_array_performance
2 optimize_structure
2 dataflow
2 pipeline
2 block_level_protocol
2 port_level_mem_interface
2 port_level_protocol
2 port_level_axi_interface
2 vitis_optimization

Lab/Project References

https://cool.ntu.edu.tw/courses/3773/modules/items/110289
https://github.com/KastnerRG/pp4fpgas/tree/master/examples
https://github.com/KastnerRG/pp4fpgas/tree/master/labs
https://www.xilinx.com/support.html#documentation 
https://github.com/ptpan/ece5775
https://github.com/cornell-zhang/rosetta
https://github.com/adsc-hls/synthesizable_h264
https://github.com/necst/coursera-sdaccel-practice
https://github.com/Xilinx/HLx_Examples
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug871-vivado-high-level-synthesis-tutorial.pdf
https://github.com/Xilinx/Vitis-Tutorials/tree/master/docs


Lab/Project Resources



Course Credits

• Earn credits from the followings:
• Submit Lab/Assignment choose from lab/project references or propose yours 

• Credit based on the weight category

• Class Presentation – 5 minutes presentation 
• weight category * quality <0.7 - 1.3> （insight + presentation skill)

• Final project – 10 minutes presentation
• Weight <5-10> * quality <0.7 - 1.3> (insight + presentation skill)

• Where is the insight from
• Fully understand the material

• Deeper observation on the analysis report

• Try out different optimization, make trade-off, and comparative analysis


